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AIRFOIL PROFILES FOR JIJNllIU31 PRESSURE DRAG AT SW?ERSONIC VELOCTHES—GENERAI,
ANALYSIS WITH APPLICATION ‘TO IJNEARXZED SUPERSONIC FLOW 1

By DEANR. CHAPM.W

SU3131ARY

.4 theowtical inlzsi igation is made of L& airfoil projile for
77$inim um prv.wure drag at zero l~ft in supemo nic $U w. In h?
first part (~fthe report a general method is dere[oped for caku-
[ating the’ ]))’(@-{e baring the least pressure drag -for a giren
41U1’l”[iaj7JCodifiojl, SUCfL as a ~iil?~ .$hd?~d re@?h~~~t or a

giren thicknem ratio. The rariou.s structural requirements con-
.videreci ;nclude bending strength, bending sti$mss, torsioncd
.vtrengtfi, and torsional d ijrle.s%. Lio assumption is made
regurding the trailing-edge t!l’ickrte~s; h? opti”mum ra~ue ia
determined in the ca~culativns as afunction o-f the base pressure.

T() illustrate the general method, the optimum ai<foil, dejined
a.~the ai[foii baring minimum pressure drag-for a giwn auzil-
iwy c~nditiui~, is calculated in a second part of the report using
the equafivns ~f linearized supersonic$ow. It isjo und that the
i.)ptiraurnai<foil in most cases has a blunt trailing edge. It also
is-found thaf f)ie optimum thickness distribution depends only on ~
one dirnen,~?.onle.~sparamefer, ~errnedthe ‘(base pressure param-
~t~r”. T), ;s parameter in rakes the Mach number, airfwil
thickness ratii>, and base pressure coe~cient. The e~eci! vj
i:am.ations iri edl @ these [after fhree quaniitt.es on the shape of
the opt imum prcyf[e is discussed, and a simple cm-terion-forrrtu-
lated -for deterrninir-,g the condif ion under which the optimum
~raijing-edge thickness is greater than zero. ~Le calculated
pressure drag of tk optlmurn profile is compared to that of a
biconrex sharp -trai~ing-edge profile satisfying the same struc-
tural reqilirerntnt. The reductiwn in pressure drag depends on
the base press ure parameter and caries frox~ a Je u percent ~o as
much as 75 percent.

INTRODUCTION

In supersonic flow Lhe fkite thickness of an airfoiI in_rari-
ably introduces a certak amount of pressure drag which can
be minimized h!- a ra-tional choice of airfoil shape. The
protie for miuicnum pressure drag depends, among other
things, on the particular auxiIiary condition that is imposed
on the airfoil geometry. For example, if it k required that
the optimum profi[e (deiinecl herein as the profle of least
pressure drag for a gi~-en au.siIiar~- condition) satisfy the
auxiliary condition of a gi~-en thickness ratio, then according
to 9 v.-eII-known result of .kckeret’s Ihearized airfofi theory, !
the so-called cIoubIe-w-eclge profile represents the optimum I

sharp-trailing-eclge airfoil. This purtirular auxiIiar~- coridi-
tion, however, does noL represent practical csses w-here an
airfoil must satisf~- a certain structural requirement, such as
a gi~en area moment of inertia, or a gken section moL3ulus.
Drougge (reference l.) has mde a more elaborate theoretica~
anaIysis to determine the optimum profiIe for the awciliary
condition of ~ giren bending stiffness of [ht. airfoil, and also
for the condition of a gken torsiomd stifkw. Drougge used
linearized airfoiI theory and considered onl~- sharp-trailing-
edge airfoik. His results are somewhat limited in two
respects: The~- do not cover cases outside the scope of linear-
ized airfoil theory, ancI$ though they incIude the audiary
concl~tions of give~ bending and torsiortaI stiffness, thej- do
not include the auxiliary condition of a given bending strength
(given section mocluIus). A far more important limitation
of this cmaI@, though, is the tacit assumption that the
optimum airfoil vi-ill hare a sharp trailing edge.

There is a small amount of experimental e~-idence in the
measurements of Ferri (reference ?) on airfoils with sharp
trailing eclges which suggests that the optimum airfoil might,
in fact, have a moderately thick trailing edge. The meas-
ured profile drag of one airfoil tested by Ferri (G. U. :3airfoil
at a llach number of 1.S5) was considerably lower tlmn
inticicl theory wouk? indicate. AJ.Iommce for skin friction
would cawse th~ discrepancy to become e~en greater.
Schlieren photographs and pressure-distribution measure-
ments showed that ~-iseous effects effect i=rely thickened the
airfoil shape near the trailing eclge. From these results it
can be inferred that at moderate supersonic ~-elocities it is
possible for an airfoiI with a thickened trailing edge—that is,
a blunt-trailing-edge airfoil-to hkve lower drag than a
corresponding sharp-trailing-edge airfoiI. Emplo-ying a
different approach, thk inference has been obtained from
quantitative considerations in reference 3, inhere a reasonable
estimate of the base pressure was macIe and the drag calcu-
Iated as a function of trailing-edge thickness. Such calcuIa-
tio~s, though ~ery approximate, have indicat d that in cer-
tain cases a moderate increase in trziling-edge thickness will
decrease the o~er-aII pressure drag.

Apart from the reasons just, cited for expecting that the
optimum supersonic airfoiI might hxve ~ thick trailing edge,
there are otkr independent considerations which suggest.

1Supersedes >-AC A T.%- 2%4, x.<irfol PmEk fiorMinimum Pressure Dr~g a Supersonic VeIoci~ies—Oeneml .h?.iysis With A_pplimticm to LineMzed Supersonic FIow,” by Dean R
C“hsptnm, 1951, ?--ariousexamples of optimum proties given in TX ?25! h%w ken !upQIezwrde 3 %nd revise$ for the present repam in mcord!act with ex~rimentd mesucements of b>=
pressure published .mhsquent to TAT 2%4.
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the same result. By analyzing conditions at infinite Mach
number, Sa.enger pointed out in 1933 that, even with a vacuum
at, the base the optimum zirfoil for a given thickness ratio
would, in this extreme case, have a, trailing-edge thickness
equal to the maximum airfoil thickness. (See reference 4.)
h rcfcwnce 5, Ivey obtained a simiIar result by ca.lculatiug
the pressure drag at a Jlach number of 8 for a family of
airfoik hmving various positions of m~ximum thickness.
310re recently, Smelt (reference 6) has developed an approx-
imate ronclition determining when an airfoil with maximum
thickness at the trailing edge has lower drag in hypersonic
flow than an airfoil with a sharp trailing edge. %enger,
lvey, and Smelt, however, did nob consider airfoils having a
trailing-edge thickness less than the maximum airfoiI thiclt-
ness, and henee their results do not determine the optimum
profile for hypersonic velocities. Nevertheless, iL is evident
that at high supersonic. Mach numbers the optimum profik
has a relat ive~y thick traihng edge, @ this basis it is not
unreasonable to expect thai at lower supersonic 1 keh num-
bers the optimum profile would have some thick ness at the
trailing edge.

The physical reason why it. is possible for a M~ult.-trailing-
edge airfoil in supersonic ffow to have a lower pressure drag
than % corresponding sharp-trailing-edge airfoil is quite
simple, as can be illustrated b-y the two profiles shown in
figure 1, These profiles have the same area, which corre-
sponds to the same torsional stiffness of a thin-skin structure

r -- .$h~rp- trailing-edge airsfoil

--- L?hnf-frni[ing-edge uirfoi/
,,

y -=+

FIGrR E 1,—ske[ch comparing a typical sharp- trail ing.edge airfoil and a blunt-trailing-edge
airfoil of equal area (equal torsional stiffness [or a thin-skin structure).

‘Ile lJlllni-trailillg-ecige airfoiI has a sIightly smaller thicl;-
ness ratio and a position of maximum thickness which is
farther rearward, hence the leading-edge angle. is smaller
and the pressure clrag of the surface forward of the trailing
edge is less than that, of the sharp-trailing-edge airfoil. A
certain amount of base clrag, however, obviously is added by
employing a thick trailing edge. Tf the added base drag is
less than the reduction jn pressure foredrag, then the net
result is a smn]ler total pressure drag for the b!unt-trailing-
edge airfoil. This invariably is the case at extremeIy high
supersonic 31 ach numbers where the base drag is negligible
compared to the pressure foredrag. At Iow supersonic
Jlach numbers, though, the base drag can be many times
the. pressure foredrag, and the optimum trailing-edge thick-
ness must be expected a priori to depend to a great extent
on the base pressure.

The present theoretical znalysis was initiated in view of
the foregoing considerations. The primary purpose of the
investigation is to develop a method of determining the
supersonic airfoil profile for minimum pressure drag at zero
lift, without making an arbitrary assumption about the trail-

ing-edge thickness. The profile so determined, which is
termed an optimum profile, is considered to depenfl on tIw
base pressure, X[aeh number, zm{l tlw particular auxiliar~’
condition imposed on the airfoil. A secondary plirpose of
the investigation is to develop a method of sufFicirmt geller-
ality to enable second-order and shock expansion tlleori es
to be used in calculating optimum profiles. Such gc~lrrality
is desiraMe in order to obtaiu results th~~ttire valid at. }~ypt’r-
sonic IIach numbers.

NOTATION

B base pressure parameter for li~learized s(lpf’rsonic flo~v
-. - ‘-

which the optimum nirfoil h~is n l)l~lnt trai Iingcdgo
c airfoiI chord
cd “seetion pressure ch’ag coeffkcicnt

f symbol for the function Py’
F(k, ~o)incomplete el]iptic int~gral of tht’ first kind of nlodlI-

lus k and amplitude p
trailing-edge thickness
dimensionless tlrailing-edgr tl) ickness (h/t)

given value of the wuxiliary intqgral
EJCC5)4

constant defined by equstion (2o)
length of chord over which airfoil thickness is com[a[~t
ii.mensionIess length of chord over !vhich airfoil tllick-

ness is constant (1/s)
3fach number
ar%itrary parameter appmu-ing in the definition of Lhc

auxiliary integral 1
– (For the examples considered n is taken as 1, 2, ;] or

m.)
stgtic pressure on airfoil surface

pressure coefficient [(p-p.)~(~ p. T’=’)]

[ lb-’’-’)base f~ressure coefficient ~,–p~)

Reynolds ni.imber based on airfoil chord
distance from leading edge to first downstream posi-

tion of maximum thickness
maximum thickness of airfoil
velocity
di.st.ante from leadi~g edge
dimensionless distance from leading edge. (x/’s)
ordinate of upper half of airfoil
dimensionless ordinate [y/(t/2)]
+fJfmz.—1

Langrangian multipliw (arbitrary constant)
arbitrary parameter appearing in the definitio)l of tlw

awxiliary integral 1
(For the examples considered a is take[] m O or 1.}

mass density
SUBSCRIPTS

airfoil surface at leading edge
airfoil surface at trailing edge
free stream
base
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C(Z

dw
1’

r

circular-tire bicon~ex airfoil with sharp trailing edge
double-wedge airfoil with sharp tra.iIing edge
-mcuum at. base

superscript

differentiation with respect to x

THEORETICAL ANALYSIS

ASSUMPTIONS AND STATEMEXT OF PROBLEM

k [he auaIysis which follows several simpIif.tig awunp-
tions m-e made. Two-dimensional airfoils in a purely super-
sonic flow- at zero lift only m-e considered. It is assumed that
the pressure at any point on the airfoil surface forward of the
trailing edge cun be caku]atecl from the flow of tin in~-iscid,
nonconcl ucting gas. It is further assumed that the Ieacling
wlge is sharp. No analogous assumption is macIe regarding
the traiIing-edge thickness, but it is assumed that the base
pressure coefficient Pa is know-n. This ertables the optimum
trailing-edge thickness to be calculated as a function of Pb;

hence, experimental datti on base pressure in two-dimemsiond
flow are required in order to appIy the theoretical results of
the zmaIysis to a given case.

From the fa(:t that the surface pressures on the top and
hot tom of an airfoiI ca~ be calculated inc~epenc?ently in a
supersonic flo~, it follows that at zero Iift the optimum
profile w-iH be s+ymnwtrical about the chord p~ane. C’ouse-
quently, reference is made tlu-ougbout to the thickness distri-
bution of ody the upper surface of an optimum profile.

In comparing the pressure drag of various profiles, the
vhor(l Iengtb is held constant, and the thickness distribution
along the chord is varied in a manner which is arbitrary
except for the requirement of satisfying the particular
w.xiliary condition be-mg considered. The various amiliary
rondit ions investigated are: a given torsionaI stiffness of the
airfoil section, a given torsional strength, a given bending
st iffnws, a given bending strerugth, and a gi-ren thickness
ratio. For each of the structural conditions the case of a
thin-skin structure and a soIid-section structure is considered
since the optimum airfoil profile may be expected to depemI
somewhat on the type of structure. Attention is focused on
the fact that the basic idea empIoyed in the a~aITsis in~oI~es
the minimizing of pressure drag for a given structural require-
ment; the results obtained with this method of approach are
the same as would be obtained if the structural characteristic
were mafimized for a given vaIue of the drag.z

.MATHEM.MTC4L FORM L’LATIOS OF PROBLEM

The pressure drag cd of an airfoiI with a thick traifing edge
is the sum of the base drag and the pressure drag of the sur-
face forward of the trailing edge. Letting P be the surface
pressure coefficient, y(r) the function defining the surface,
and pb the base pressure coefficient. then cd may be e.xpressec]
~~

(1)

The probIem is to determine Lbe particular function y(.r}
and the correspon(iing Talue of the trailing-ec~ge thickness

h which minimizes this expression for a gken audiary
condition.

Before expressing the various auxiIiary conditions in ana-
lytical form, it. should be noted that- the surface pressure co-
efficient P is regarded as a known functiort of the variable #
and the two parameters y’O (surface slope at leading edge)
and M.. The actuaI functional form of P(g’, y’O,MJ fl
depend on whether linearized, second-order, hypersonic, or
shock-expansion theory is empIoyed in ccdculathg surface
pressures. For example, if Iinear theory were empIoyed, the
explicit expression P= 2 Y’/l~.~l.r—l vrould be used; but.,
if shock-expansion theory were employed, a more compIex
impIicit expression in~oIring y’O as w-elI as y’ and .M_ ~ould
ha-s-e to be used. Ln order to aLIow-various theories to be
employed, the particular functiorial form of F’(Y’, Y’0, .lf~j
vi-illat present be unspecified. The equations -which result
can be appIicxI to any of the various theories by substitut~~
the appropriate function for P.

Turning now to the consideration of audiary conditions,
it is clear thst some integraI expression will be in-io~ved,
since the function y(r) is not know-n beforehand. If, for ex-
ample, the airfoiI is a soIicI-section structure and the moment
of inertia is prescribed, then thp prrrticwlar auxiliary condi-
tion which y(r) must satisfy in acldition to minimizing cd is

P,
J&that the integral - d.z be constant. .4 difTerent audiary

.0
condition would, ‘of course, be represented by a different
integral. In the present investigation a somewhat general-
ized ar.miliag condition is used mhich is represented by the
singje inte=~al

(2)

where n and r are constants. Thus the exampIe just cited
is a special case of the abo-re integral with n=3 and c=O.
To illust pate further, the au.diary condition of a gi~-en section
modulus of a soLid-section airfoiI is represented by the specia~
ease n=3 a~d ~= 1. The corresponding solution for y(x)
in this latter case would provide the profile of least pressure
drag for ELgi~en bendirg strength.

Some of the ditTerent structural criteria to which the gen-
eraI integral (2) corresponds are summarized in the foIlowing
table::

!
Stmctwd m-itwia

IF- !4 I
51

~ Given tom-onal stiflmas,or iorssmal strength, or volume of thin- ~

‘ t 0 ~ Skinstr&ue

z~o ~ G>en bemdfag stifie.as of thin-skin structure
::0 Green bending stf5ess or gifen torsional stfiess of solid-section

! sbmcture * I?2:1~Girenbending strength of thin-skin structme
311 i Given bending strength oi .wlid-swtion structure

i,’

* As a first approximation the hmsiond stiffness of a thin solid-sstion pro61e is kken M
be proportional to th? moment of inertia abouI the chord pkme.

Thus, b~- solving the problem with the general integral
(2) Ieft in terms of n ancl m a wicle rariety of auxiliary con-

; This statement. which ~ppears evident from physicai mnssdemt ions. is equirs tent to Mayer’s rtcipr@?ils theorem [w i.wverinxtric problems ia the cukaius of partitions.
- For t hin-ck:n structures the thickness of skin k raken to be constz~t owr the chord kngt b. Th:> t !Yocsscs K=a =0 And N=== I we notinclwk+ im t his table m they appuently repre:+~t

no srrwihle pract icai problem.
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ditions can be obtained simply by substituting appropriate
integers for n tincl ~. From an engineering viewpoint the
general form of equation (z) enables approximate solutions
to be obtained for wings of intermediate structural solidity
by interpolating between the solution for essentially zero
solidity (thin-skin structures} and the solution for complete
solidity (solid-section structure).

Summarizing, the problem formulated can be stated math-
ematically w that of finding the airfoiI-ordin.zte ftmc tion
y(x), cmcl the trailing-edge thickness 1.=y(c), which mini-
mizes the drag expression (I) for a given constant value of
the structural integral (2). The bo.unclary conditions im-
posed we that w(O)=0 and that P~ is given. If t clid not
appear in equation (2), this mathematical problem woulcl be
a relatively simple isoperimetric. problem in the calculus
of variations, Tl~_eoccurrence of t, the maximum value of
y(x), complicates mat ters because it is not known before-
hand and, in fact, is one of the quantities to be determined
from the given values of Mm, P,, a.ncl 1. i$ciually, aII
equations necessary for soIving the problem formulated coukl
be obtained directly from advanced treatises on the calculus
of variations since the problem is a special case of the so-
calIed ‘(problem of Bolza with variable encl points”. (such
a procedure would lead quickly to equations (11), (12), and
(]3).) However, the necessary equations can also be ob-
tained by the simple methods employed here.

ilfETHOD OF SOLUTION

Given structural criteriai—Since the pressure drag of the
optimum airfoiI, by definition, is tbe lectst possibIe of all
airfoils having a given value of the stmct urfd integral (2),
it. follows thati the pressure drag of- an}- “varied’ ~ airfoil,
having ordinates and slopes e~-erywherc close to those of
the optimum airfoil, must be in the neighborhood of a
minimum. Hence, by considering on~y infinitesimal changes
6Vin the ordinate of the optimum profile, the corresponding
increment in drag ~c~of such a variecl profile can be equatecl
to zero. Since y(x) is to provide the true minimum, the
resuIting equation must, hoIcl for an arbitrary orclinat e change
&y varying with x, or for an arbitrary change in airfoil thiclc-
ness M, or for an arbitrary change in trctiling-eclge thickness
M, or for any combination of variations thereof, provided
only that the integral (2) is constant, for aII sLTchvariations.

T-- Op fin.wm pro file
\
\,, r,-- Varied pro fi[e &f/z

“, \
,t cfy(z}
\\ -_4-.-.L__a.
\’

~ A’” B’ ‘>~,“

‘\ “, ,~’
\
\ ‘/

/
/ 1‘u ---c-J-///
-—- —!2-- -— —

01----
_!L--

S 1

L c 4
FIGURE 2.–Sketch of upper half of varied and optimum profiles.

Applictition of this basic. principIe, as will be seen, lea(ls to

a sufficient number of equations to determine the complete
geometry of the optimum profile.

A sketch of the type of optimum profile to be analyzed
and the corresponding varie(d profile is sho\rI} in figure 2,
Yariow quantities which appear often in the subsequent
anaIysis are illustrated in this figure. It is to be Hoted that
alIo wance is made for the possibility thal the optimum
profile may have .a straight midsection of lengtI~ 1, the opt i-
mum value of which must be determined from the anaIysis.
The yaried profile is seIectecl such that. it cloes noL change
the ordinate or the surface slope at the leacling edge. lniro-
ducing the definition j = Pg’ for the purpose of brevity, find
ecpating the drag of the optimum profile k) the drag of
the infi~~itesimally varied profile, yieIds

The smaII change in slope W’ is equal io -& (w), so cqlla-

Integrating by parts,

The chordwise clistribut ion of the variation 13yis no L en-
tirely arbitrary; it must be such thaL the auxiliary condition
is satisfied, namely, the ~-alue of 1 for the op(imum profile
must be equal to that. of the varied profile.

Retaining on]~”first order variations, this expression simplifies

(s)

This ecluation must be satisfied, of course if bolh terms on (he
right side are multiplied by zn arbitrary constant A. A1orc-
over, equation (5) must be satisfied simulh~neomly. The
arbitrary character of i enables the two equations (5) and (8)
to be combined into a single eqlmt ion ~vhirll mwst hold for
arbitrary variations in .3v, M, ~n(l IN,



.4ERFOIL PROPILES FOR MIXIMUX PRESSURE DRAG .4TSUPERSONIC TELOCITIES 133

(!2)

Thus, ~ince k is arbitrary, th.k singIe equation implies that.
both equations (5) and (3) are satisfied.

If at this poin~ the variation dtis considered to be arbitrar~,
equa tion @) as written -would incorrectly suggest that
kacr mwst be zero. Hence it is to be expected that an
additional term containing H exists in the integral expression
of equation (9). Such a term arises from the contribution
of the straight midsection to thk integral, since o~er this

d af -()region, 6y=ITt~2. .41s0,y=t/2 and ~ .% ‘O o-ier this region.
/

Hence

The variations 6.v, ~h, and at can now be conducted entireIy
independent of each other. Each of the bracketed terms in
equation (10) must be zero, if the indh-idual -radiations arc
not zero. Reemploying the definition j= Py’, the foIIowing
equations are obtained:

The differential eyuatio~ (11), of course, results from
equating to zero each of the two integrak in equation (10).
This d~erential equation, therefore, need be satisfied only in
the t-wo chordwise regions covered b~ the limits of these
integrals, namely, in the region from 1=(I to z=s, and in the
region from x=s+l to Z=C. (See fig. 2.) If the optfium
airfoil has a Elnite length of straight midsection (e.g.$ AB in
fig. z), the differential equation (11) need not be satisfied in
this intermediate region.

Fortunately, one integration of equation (11)
mediately be made, thereby Io-w-ering the order of
differential equation to be sol-red. MultipI@g
(11) by y’ gives

d’ aP ‘

)
O=z# ~(P+y’— +hny’-l y’

ilg’

bP ,., ,, a’p—+x g (y)=?y’g”W+Y -?/~yr2

(=g !I’2g+ )

can im-
the basic
equation

—

From this it is seen that a first iniegraI of the basic differential
equation (11) is

3P
~kyn=constanty’2 ~ 1 (11 a)

.&t the point , or points, where y’=0 the ordinate is equal to
f/2. E~aluating the corstant of equation ((1 la) from this
considers tion yields

This equation, together with equation (12), equation (13),
the given ~alue of I, and the boundar~ condition M(O)=0,
determines the complete geometry of the optimum p:ofle.

Given thickness ratio .-.lttent ion is called to the fact that
speciaI precautions must be taken in applying the foregoing
analysis to the auxiliary condition of a given thickness ratio.
For this particular case at is zero, thereby causing the Iast
term in equafion (10) to -ranish automatically without
requiring equation (13) to be satisfied; equation (13), there-
fore, does not necessarily apply when the thickness ratio
is prescribed. Sloreomr, equation ‘(llb) also does not
necessarily apply since iL -was assumed in the process of
obtaining this Iatter equation that the optimum airfoil had
at least one point where y’ =0. Such is not the case for
the auxiliary condition of a given thickness ratio, and hence
more det aiIed considers tion is required-

The appropriate differential equation to be used when

flc is given may be obtained from equation (I Iaj* by setting
k= O. There results

aP
Yf2~ =constfmt

which is satisfied by- any straight surface y’ =constant,
regardless of whether linearized, second-order, or shock-
expansion theor~ is ~*ed for P. The appropriate co~dition
which must be satisfied at the traiIing edge is, from equation
(10),

Here the inequality is included since 3h for the case of a
given thickness ratio is not al~a~s entirely arbitrary. Thus,
when h==f@ (wedge, airfoil) ah is restricted to always be neg-
ati-re, and a minimum can exist if

this wouId make fic~ al-ways positive instead of j~st.
making C-dstationary. Consequently, under certain con-
ditions two soIutions are possible- First, the upper hdf
of the optimum profile may consist of two straight segments
with h<t (as illustrated in fig. 3), provided the equaI sign
in (15) applies. Secofid: the optimum profiIe may be a
~edge profiIe with h=t, pro-rided the inequality sign in (15)
applies. If both types of solution are physically possible

~ ff quatkm {11) is UWI ctrereresultsP+ fdPf2f= emstaut, which aLw is satisfied by any straight surface. The mnwant iu this Iatter equation, hoxe~er, dc+s not have the same Wue

for both stmight segments mmprking tbe pro~e; whereas, the cmstam in eqmtion (14) is the s?me for lwth segments. (See appmdix.)
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I 1

h/2
t/2
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! t
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FIGLJRE3.—Sketch of upper Mf of optimum profile for a given thickness ratio,

in a given case, the true soIution, of course, Wouid be the
one with lower chg.

If it k possible to obtfiin a general solution to equations
(1 lb), (12), and (13) (such is the czse for linearized super-
sonic flow), then the first of tb e two solutions mentioned
above may be obtain etl without solving equations (14) and
(15), but by passing the general solution to the limit as
n+ m ,5 In order to verify that this limiting condition
represents the auxiliary condition of a given thickness ratio,
three conditions must be satisfied: First, as n+ co the
auxiliary integral must correspond to. the case of a given
thickness ratio; second, the clifferent ial equation (1 lb) must
reduce to equation (14) in the. limit as n-+ m ; and third,
the infinite value of n must be compatible with equation (13).
t20nsider for the time king that the chord is of unit length.
Since for any reasonable airfoil y< 1, it follows that

r

c
y“ dx +0 as n+ w , and hence 1-+0. A solution for 1=0

,0
would represent the optimum airfoil cletermined wit ho ut regard
for an auxiliary integral. Such is the condition that would
be used in determining the optimum airfoil for a giyen
thickness ratio; hence the first of the above-mentioned
conditions is satisfied. inasmuch as y/(t/2) <1, it is eviclent
that [y/(t/2)]’’-+O as n-+ ~, thus reducing tb e differential
equation (1 lb) to the form

which is the correct differential equation. .% regwds the
third condition to be satisfied, it is seen that the values
~=0, n = ~, 1=0, and a= finite are compatible with equation
(13). ~onsequentIy, the limiting case n-+ ~ in the general
solution to equations (1 lb), (12), and (13) represents one of
the possible solutions for the case of a given thic]mew ratio.
This fact will be used later in the report.

QUALITATIVE RESULTS OBTAINABLE WITHOUT SPECIALIZING TO A GIVEN
TYPE OF Supersonic FLOW

Although few quantitive results can be obtained from the
basic systems of equations (11), (12), and (13), without
specifying a.particular form for the surface pressure coefficientt
P, there is one general qualitative result that can be obtained
from equation (13) without any further mdcula~ion. The
optimum length of straight midsection 1always is zero for the
auxiIiary condition of a given torsional stiffness or a given
bending stiffness (a= O), but never is zero for the auxiIiary
condit.io~ of a. given bending strength (u= I ). Since (t/2) ‘-’
would be the value of 1 for a rectangular-bar airfoil of the

same thickness as the optimum airfoil, it is evident that for
an actual airfoil 1/(t/2)”-u wiII be of the order of one-l[alf or
twe-thirds. As an example, this means that when bending
strength is crit.icaI in a thin-skin skructure (n.= 2), the opt i-
mu” length of straighb midsection wil~ be of the o~der of
one-t j~irclthe chord length.

CALCULATION OF OPTIMUM PROFILES USING LINEAR
AIRFOIL THEORY

SJ?EC1ALIZATION AXD SOLUTION OF GENERAL EQUATIOXS FOR L.INERAR.
IZED SUPERSONIC FLOW

Given structural criteria,—According to the theory of
linearized supersonic flow, the local surface pressure coetli-
cien t on fln airfoiI is given b~~

P=; y’

I?or this approximation the Lmsic differential equation (11 b)
becomes

or, nfter solving for dz/dy,

This can be put into a more convenient fol’ml~yil~trodL1t:i[lgLI}C
dimensiordess variables X, 1’, ~, and Hdefined in the list of syrn-
boIs, and eliminatingl~~ by evaluating equation (18) at x=.!.
Between_ the leading edge and the first downstream posit ion
of maximum thickness dy/dz is positive while the din~ension-
Iess variables X and Y both vary from O to 1, Along tlIe
length of straight midsection Y= 1, while X varies from I to
1+L. Along the downstream portion of curved s~lrfwe
dyldx is negative and Y varies from 1 to H, while iY varies
from 1+-L to c~s. ConsequenLIy, equation (18) giving .Y as a
function of Y becomes (with the coni’ention tlla~ the sign of
all radicals is positive)

[

1 “ dl’Jl—C yT/l_~”n
on surface facing upstream

x=

J ‘-

1 dl’
1+~+~ ~r;~~–].”. on surface facing do~vnstrefim

(19)

where the constant k. clepends only on n and is given by the
clefinite integral

{

2 for n=l

k.=
f

I dy
_= T~2 for n=2 (20)

. 0 \/]_~ n
1,4023 ... forn=3

It miy be noted here that integrals of tl]e type occurring
in equation (19) also occur at numerous places in the sub-
sequent anal.vsis. Such an integral, being a function of the

$ It shcmId be noted that the vaIue n =0, when substituted in the auxiliary integral, gives 1= (tj2) ‘~= constant; but tbls value cannot be used to obtain the solution fur the @se of a given
thickness ratio bemuse n=O is iucampatibIe with equation (13).
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parameter n and the lower limit 1“, can be e-raluated either
graphic alI}- or am ly ticdly. An analytical evacuation for
the first three integer values of n .yieIds

where

~=~in *=0 9659 ~o~~=1~—1 -+1”
Iz “ ““” ~3+1-r

The function F (h-, p) is the incomplete eIliptic integral of the
first kind of moduIus k and ampLitude ~. (A t%ble of tis

function is given in reference 7, page 122.) For con~enience
the rarious formulas de-reloped later are lefL in terms of the
above iutegral; specialization to the inditidud functions
indicated in equation (21) for a given n could be made in
any subsequen~ formula if desired:

For linearized supersonic tlow-, equation

p,=pl+(,~’ ;$),

4 dy
(-)‘~ d.r, ,

~ (j/c) d ~“

–(-)= p(sfc) G?.X-,

or, on using the relation —k, d.Y=dl”/~[l — 3“’ _w~c~ ~mfies
to the surface faei~~ downstream (equation (9)), there is
obtained

(22)

As defined earlier, Zl= h/t is the optimum traiLing-edge
thickness espressed as a fraction of the maximum thickness.

Equation (13) can be written, in terms of .Y and T, as

Equations (22 ) and (23) can be put into more usabIe forms
by noting from equation (19) that

After some algebraic manipulation invol~m integration by
parts and introduction of the definition B- —P~i3/(t/c)
there results from combining equations (22), (23), and (24),

These latter tvro equations are the tired equations cleter-
mining the optimum dhnensiordess trailing-edge thickness .H
and the opt imum dimensionl=~ Iength of straight midsection
L. The corresponding equations in~oIving the given I-alue
of 1 can be developed from equations (13), (’22], (25), and
(26) as follows:

‘Ilk last equation determines H as a function of 1/(t~2)”-*,
or tice rersa. It. is to be noted from equations (24), (26),
and (2i) that the geometry of an optimum profile for given
vaIws of n and a is determined solely by H, which, in turn,
depends onl-y on the base pressure parameter B (equation
(25)) .

Given thickness ratio.—%ce the use of Linearized theory
provides a general solution in closed form of the basic equa-
tions (llb), (12), and (13), the optimum profile for a given
thickness ratio can be obtained, according to considerations
present ed earlier, .~imply b-y letting n + m in the general
soIution. Since 1“ is kss than unity, it is e-rident that, for
very Iarge l-alues of n.,

~sing equations (19) and (z5), and noting that L= O for the

present case, it follows that

1“ on surfwe faci~~ upstream~y= $
(2 – Y on surface facing downstream

(28]

Equation (2S) show-s that the optimum surface has a dis-
continuity in sIope at <l”= 1, and that both segments make
a common angle with the chord plane. Equation (29) pro-
-rides the required relation between the base preswre param-
eter B and the optimum trailing-edge thickness. Equation
(30) determines the position of maximum thickness. .As H
varies from O to 1 equation (29) co~ers onIy the range of B
from 2 to 4. Within this range the above equations apply,
and the optimum profiIe is of the type illustrated in figure
3. For the range of B from O to 2 the second possibIe solu-
tion cliscussed earlier, na.mel}-, a wedge profle, represents
the optimum section. For values of B greater than 4 t~e
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double-wedge airfoil with z sharp trailing edge is the optimum
for a given thickness ratio.

It is remarked that the above solution also can be ob-
tained quite errsily by soIving equations (14) and (15)
clirectly, instead of employing the limiting process. This
direct method can be used to determine the optimum profile
in those cases where the general solution in terms of n and c
cannot readily be found. Such is the case when shocl~-
expansion and similar higher-order theories are emp~oyed.

CALCULATIONOFPREWUREDRAGCOEFFICIENT

Given structural criteria, —Since the d~mensioiless thick-
ness distribution of an optimum profile is completely deter-
mine{] by the base pressure parameter, it is to be expected
thrrL the quantity Pcd/(t/~)2 also wd~ depend only on B.
I?rorn equation (1) and the definition of B it is seen that

Substituting P=2yr/B and changing to the dimensionless
variables X, 1’, and H yields

The i~tegral can be expressed in terms of 1/(t/2)a-” by
noting that (d Y/dX)2=k,2(I — Y’) and that 1/(t/2)’-u=--

(s/c) ~c” Y“dX. There results for the pressure drag co-

efficient of the optimum profile in linearized flow:

inasmuch as H, s/c, and I/(t/2~n-” depend onIy on the base
pressure parameter, the quantity on the left side of equation
(31) also depends only on B for given values of n and U.

It. k of interest to compare the pressure drag of the theo-
retically optimum profiIe with that of more conventional
sharp-trailing-edge profiles. According to linear theory the
drag coefficient of a bicon]’ex cirw.kr-arc airfojl (cd),. of

thickness t,. is given by

~(C&fl 16
(tea/c)’=T

(32)

A calculation of the value of the auxilimy integral for a,
circular-arc profile (1..) is readily made by substituting

y=~ (t,~/c)x [1– (z/c)] in equation (2]. It is found that

By requiring that lCa= I where 1 is the wdue of the auxiliary
integraI for the optimum profile of thickness t and position
of maximum thicliness at s/c, then equations (31) ancl (32)
can be divided to yield

k.’ { 1 –_~I/(t/2)’-7 ) +BH(s/c)2

‘=$(’’C)’{[%-l’’’(’’’’:-u’IA ’33)

(C;ca

This equation gives the ratio or the pressure drag of~an
optimum profile to that of a sharp-trailing-edge} circulw~iirc
profile having an equaI value for 1. If the prcsslwe drag
coefficient of a double-wedge profile (cd)d~ is userl as a basis
of comparison instead of a circular-arc profile, there results
in a similar manner

cd k,’{ I – [1/w2)’-’] } +BF$(&’—— (34)
‘Cd)”w 4(s/c)’{ (n+ 1)[1/’(t/2)”-”J }=

It may-be noted that the right side of equatiorls (33) nnd

(34) depend ordy on the base pressure parameter if the values
of n and u are given.

Given thickness ratio,—As noted earlier, k,--> 1 as n+ cu.
From, equation (27) it follows that l/(t/2)’-u-+0. By con-
sidering equations (29), (30), and (31 ) there result,s

[–1

pc, =2 B_g=4_H2

(t//c)’ .= ~ 4
for2<BS4 (35)

Since ‘[@e,/(t/c)2],a= 16/3 and [~c~/(t/c)2],w=4, it follows that

&=iH2B-3=i%(4-$p’‘0r2sB5’ ‘3’)

and
.-

—=gg=l-:(C:;w for 2<B54 (37)

These are the same two equations tha~ would be obtained by
passing equations (33) and (34) to the ]imit as n+ m. When
B< 2, the optimum a,irfoil for a given tl!ickness rat io, as
previously discussed, is a w-edge, for which @c./(t/c)’= 1+=1?,
cd/(c&.=3(l+B)/16, and Cfl/(c&@= (l+ B)/4. ~~~lell ~~ 4,
the optimum is a double wedge, for which @.,/(t/c)2=4,
cd/(cd)CE=3/4,and c6/(c~)&D= ].

If it is clesired to compare. the optimum profile ~vith a
corresponding sharp-trailing-edge profile on the btisis of rela-
ti~e 1 for a given c~, rather than on the basis of relative Cx
for a given 1, then the foregoing calculations can lw applied
by making onIy minor modifications. As noted earlier, the
thickness. distribution of the optimum profile havin: maxi-
mum 1 for a given cd is the same as that of the optimum
profile having a minimum cd for a given 1. By using tl]e
subscript. s to denote a sharp-trailing-edge airfoil (e. g., bi-
convex, or double-wedge), and no subscript to deuote the
optimum profile, the relation

can b.e deduced if it is remembered tha.L
(m—--u)power of the thickness, and that the

1 varies as the
pressure drag in

linearized theory varies as the square of the thickness. The
above equation shows that in employing an optimum sectio~l
the relative structural improvement that car] be obtained
for a giyen drag is rekited in a simple ~vay to the reIative
drag reduction that, can be obtained for a given structural
requirement.
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RESULTS FOR LIXE.4RIZED FLOW .4XD DISCCSSIOh-

Significance and physical meaning of the base pressure
parameter,—The determination of an optimum profiIe in
Linearized flow is greatly sinlpIfied by the fact that the
dimensionless thickness distribution l“(x) cIepends onIy on
the base pressure parameter B=—Pofi/(t/cJ, and Dot on
ttw indiYiduaI dues of PO+Me, or tic.

Thus, although the lIach number, base pressure, and
airfoil thickness ratio each indireedy affect the optimum
airfoil profiIe, it is only necessary to know the ~aIue of B
in order to determine the dimensionless thickness distri-
bution (2y/0 of the optimum airfoil section. ICnowIedge of
both 1 and B, of course, is sufficient to determine tjcas -ivell
as the dimeR~ioIdess distribution of thickness.

.i simple physical interpretation of the base pressure
parameter can be given if it is recalled that. the basic means
by which a thickened trding edge reduces the over-all
pressure drag is through a decrease in pressure foredrag at
the erpense of a smaller increase in base drag. Thus the
optimum dimensionless distribution of thickness must
depend essentia~y on the ratio of base drag to pressure
foredrag. The base drag for a given E3 is proportional to
( — PO) (t/c); whereas the pressure foredra.g for a E&m ~“
distribution is, according to linearized theory, proportional

[0 (t/c)~/l~Jlm~— 1.
Henre,

or, in -words, the base pressure parameter is proportional to
the ratio of base drag to pressure foredrag.

Condition under which optimum profile has a blunt trail-
ing edge.—From eclua.tion (25) it is easy to deduce the con-
ditio~ under -which the optimum airfoiI will ha~e a blunt.
trailing edge. The critical condition is obtained by setting
H= (). This determines a particular due of B, say ~.

[

8 . . . forn=l, r=O

6.~S3 .-. forn=2, r=0

~=+nkx(n+2— G)= 5.609 . . . for n=3, a=O
~~—Cl(n+2) forn=2, a=l

(3 S)
9.425 . . .

6.730. . . forn=3, a=l

4 . . . forn=~, cfiite

.3 lower -iaIue of B wouId correspond, for emmpIe, to a lower
base drag, hence the physics.I significance of D can be stated
quite simply: the optimum airfod has a blunt traiIing edge
for B<Z; ~hereas it has a sharp traiIing edge for BZZ.

Comparison with results of other investigations.--h a
partial check on the equations developed, several limiting
~a~es can be obtained by specializing to particdar dues

of a, r, and H. First, if the base pressure coefficient is zero,
corresponding either to zero base drag or eIse infinite Alach
number, then B=O. From equation (25) ii follows that
H= 1. In other words, the optimum profile for ~,=0 hzs
its ma.simum thickness at the trailing edge. lf the Mach
number is finite and the base drag zero, then this result

checks sirnpIe ph~sicd considerations-

137

If the Mach number
is infinite (for which B=O e-ren if a ~acuum exists at the
base), then this result checks the qualitati~e consideration
of Sae~~er referred to in the introduction.

A second limiting case that easl~- can be checked may be
obtained by co~sidering onIy the amdiary conditions of
.&en stiflkess of sharp-trailing-edge protiIes. The appro-
priate results are obtained bF setting u=O and H=O. From -_
equation (26] it follows that 1=0. From equations (19] and
(21) it is seen that the optimum sharp-traihg-edge profile
is a.doubly s-metric profiIe, ertch side of which is comprised __
of the am of a paraboIa for n= 1, the arc of a trigonometric
sine function for n =2, and the arc of an elliptic sine f unc-
tion for n=3; these are the results obtained pretiously by
Drougge.

Summary curves of the principal resuIts.-In figure 4 the
optimum dimensiodess trailing-edge thickness H is plo tted
as a function of the base pressure parameter B. Each cwxe
in this figure is obtained by substituting the indicated values
of n and u in equation (25). It is to be remembered that
the cur-ie com~isting of three straight -Iine seagments, cor-
responding to n = m and .r=finite, represents the auxiliary
condition of a gi~en thickness ratio. The other -ralues of n
and a represent the ~-arious structural criteria Iisted in the
table presented earlier.

u 2

FIGrEE 4.—Optimum craihg-dge tkrickne~ for linearized snpersom”e flow.

The location of the optimum position of maximum thick-
ness s/c, as determined by equations (24) and (26), is plotted
in figure 5 as a function of B. The ~alues of n and G used
here are the same as in figure 4. cornptiring these tl~~ figures

it can be seen that, as would be expected, the optimum posi-
tion of maximum thiclmess mo~es steadily rearward as the
optimum tFailing-edge thickness is increased.

Cum-es relating the value of 1 to the base pressure param-
eter are shown in figure 6. These cur~es represent equa-

tion (27). Since 1 is related to the optimum length of
straight midsection through equation (13), the ordinate in
this figure represents either of the two equal quantities,
~/(tj’~)=-c Or ?d/GC. Figure 6, therefore, can also be used to
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cletermine l~c in those cases where u is not zero. If u is
zero? then 1is zero, as noted before.

In figure i’ the two quantities c*/(c~)~a and c~f(c~)~mare
plotted as a function of B for various values of n and a.
Depending on the value of B, it is apparent that the pressure
drag of the op Limum profile may be anywhere from a few
percent to as much as 75 percent less than the pressure drag
of an equivalent circular-arc sharp-trailing-edge airfoil.
The structural criterion for which the greatest drag difference
exists is tha,t of a given bending strength of a thin-sIiin
structure (n=2, u=l ). The curves of figure 7 (b) cIemly
illustrate the high drag of a double-wecIge profile when it is
compared to the optimum profile on the basis of a gi~en
structural requirement. These curves also illustrate that
the relative drag rec?uction of the optimum airfoil for the
condition of a given thickness ratio is much less than the
corresponding reductions for the various conditions of given
structural requirements.

Method of determining an optimum profile from experi-
mental base pressure data,—The experiments of reference.
S have shoivn t}lat, the base pressure of airfoiIs in supersonic
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Q /0
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(a) Drag of optimum relative to bicon~ex circular-nrc airfoils.
(b) Drag of optimum relative to doubk-wetlxe airioik.

FWC%E i.—Drag of optimum airfoils m comparsd to the drag of two ditlererlt shtirp.trall[ng.
edge airfoils in linearized supersonic flow. Cmnpwisrm made on the basis of equal vahm?
for the auxiliary integral,

flow depends primarily on the trailing-etfge thickness,
Reynolds number, and type of boundtiry-]ayer flow. The
base pressure generally does not depen(l significantly on the
shape of the airfoil profile upstream of the trsi]ing edge,
Figure 8 presents summary correlation curves (tuken from
reference 8) showing the dependence of base pressuw on the
parameters c/[h(& )1/5] and c/[h (l?~)~[i], which are approxi-
mately proportional to the ratio of bountlary-layer thickness
to trailing-edge thickness for turbulent and htminar flow,
respect ively. Since the optimum profiIe depen({s on the base
pressure, which, in turn, depends on the trailing-edge thiclc-
ness of the optimun profiIe, the value of B is not known
initially. For this reason the process of (Determining an
optimum profile from the experimental (lat~l of figure 8
involves several steps:

(1) For an arbitrarily selected vfilue of t/e, B is cornputcd
as a function of H using the proper experimental value of
base pressure for each H.
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FWWE S.–A vemge ralue$ o( base pressure from experiments of refereur? S,

(2) .% plot of H versus B is superposed on figure 4. The
point of interseetiou ltith the existing cur_re for the particular
combination of n and CTin question determines optimum
values of H ancl B for the partieukr t/c selected.

(,3) Knowing f/e, H, and B from (1) and (2), 1 is calculated
from equation (27).

f.4j The above process is repeated for se-reral dues of t~c.
Interpolation for the desired -ralue of 1 then yiekls the values
of tjc, H, ancl B of the optimum profile. The optimum
~alue of B yields the optimum -ralues of s/c and //c. Equa-
t:ons (19) and (21) @eld the basic shape of the cur-red
portions of the desired airfoil.

The results of appl-ying steps (1) and (2) for a thickness
ratio of 0.06, a Ilaeh number of 3, and a turbtdent boundary
la~-er at Re= 107, are showo in iigure 9. It is seen that the”
optimum trafiing-edge thickness varies between O-12t and
0.6it for the difTerent combinations of n and u. The cor-
responding pressure drag reduction compared to a bicon~ex
airfoil ha-ring the same ~alue for the auxiliary integraI -raries
between6 and 29 percent, whereas compared to a douhie-weclge

&ii-foil the corresponding pressure drag reduction varies
between 1 and 63 percent.

The effect of Mach number on the optimum profile for
t/c= O.06, n=lf r= 0, and turbulent flow at Re= 107j is
shown in f&re 10. For .31. =5 an estimated -i-a.lue of

Pbih = 0-15 was employed since ~~Per~enta~ b~e Pres-
sure data are not. yet a-railable at this 31ach number. For
31. = CDand ~f~ = 1, it is not neeessary to know the base
pressure to determine the optimum profile -with linear theory.
A large effect of Mach number on the optimum profle,
particularly at Jlach numbers above about 3, is evident
from figure 10. The effect of airfoiI-thiclcness ratio on the
geometry of the optimum profle also is Iarge, as illustrated
in figure 11. (For the case t/c= O.CK?irr thk latter figure, it
was necessary to extrapolate the e~Terimental base-pressure
curves of fig. 8 (a) in order to estimate the base pressure.)
The trends illustrated in figures 10 and 11 can be explained
from elementary physical considerateion if it is recalled that
1? corresponds to the ratio of base drag to pressure foredrag.
Thus, H approaches unity as fil~ approaches unity because
the pressure foredrag in Iinear theory approaches infinihy
whiIe the base drag remains finite. lloreo~er, H also
approaches unity as J1. approaches iufinity because the
base drag, which is approximately proportional to 1/31’,
becomes small compared to the pressure foredrag, which in
linear theory becomes proportional to 1/.11. By the same
token, H approaches unit-y for ~ery thick airfoik because the
base drag, proprotional to t/c, again becomes smalI compared

cd
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FIG rBE 9.–Examples illustrating rhe efiec~ of armilimy mndit iou on the optirmrrn prohle;

linemizet tlorr. ~ertical wale expanded, .W= = 3, {“c=0.C6. turhu!ent flow at R6= I@.
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linearized flow, vertical sede expanded, n= 1, r=o, .kf~ =3, turbulent flow at Re= 107.

to the pressure foredrag, which in linear theory is proportional
to (t/c) 2.

Reynolds number has an important efIceL on the optimum
airfoil profile if the boundary layer is lamintu-. (See fig. 12.)
This is bec%use the base pressure depends nmrkcdly on
Reeynolds number for laminar flow. For turbulent. flow the
corresponding dependence is seen to be considerably 1CSS,
and the optimum trailing-ecige t}]ickness is seen to be much
Iess than for laminar fio~;’.
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FIGt-RE 12,—Esam@es illustrating the erlect of Reynolds number tmd type of Lmundary-h+ycr
fIoTvorI the optimum profile; linearized flow, verticrd sesle expanded, n= 1, c=O, .tf~ =2,
t/c=o,04.

CONCLUDING REEfARKS

The general method presented for computing the profile
shape having minimum pressure drag at zero lift has bccu
developed for the auxiliary condition tlmt

is constant. For a given airfoil theory, the determination
of an optimum profile under this condition involves tb e
simultaneous solution of equations (11), (12), rmd (13),
which are generaI in that the surface pressure eoeffk ient
P(y’) and the parameters n and ~ are arbitrary. SuclL
generality is usefuI since it allows either linear theory,
second-order theory, or shock-expansion theory to be used
iri determining the optimum profile for a number of pmctical
auxiliary conciitrions such as prescribed benrling strength or
given torsional stiffness. As an illustration of the method, Q ‘
solution has been developed in detail using linearized flowl

that is, using the expression P=2yf/~m. ln this -
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simpIe case a complete solution in closed form is obtained
for the thickness distribution of the optimum proille.

The principaI redt of the anaI@ for linear supersonic
flow is that the dimensionless thic~ess c&tribution of the
opt imum profiIe depends onl>- on the si@e parameter
B= –P,>’.ua’- 1/(t/c). This parameter has been termed
the base pressure parameter, and has a simple physical
significance in that it is proportional to the ratio of base
drag to pressure foredrag. The dependence of an optimum
profile in linear flo~ on one parameter ordy enabIes summar~
curves to be plotted showing all principal results as a furw-
tion of B (figs. 4, 5, 6, and 7). The optimum dimensionless
traiIing-edge thickness increases if either the base pre~~ure
is increased. the airfoil-thickness ratio is increased, or the
JIacb number is increased to -iery high values.

At Io\v supersonic Ilach numbers the theoreti~al results
obtained are questionable since the resumptions of Iinear-
izec~ airfofi theor~- break do-n-n as the llach number ap-
proaches unity. The results can be appIied safely onIy
to eases where hnear theory sa tisftict orily predicts the
pressure foredrag. Although at high supersonic llach num-
bers the results obtained under the assumption of Linem-izecI
flo~v ako would not be expected a priori to be of quantita-
tive ~-aIue, the~- predict, nerertheIess, the correct result
that the optimum trading-edge thickness for infinite llach
number is equal to the maximum airfoil thickness. In
view of this exact agreement in the extreme case, it is con-
jectured thaL the linear theory fortuitously may protide
a reasonable estimate of the optimum trailing-edge thickness
for any supersonic Mach ~umber not close to unity. As
regards the optimum profle shape forward of the base,
howerer, such fortuitous conditions cannot. be expected,

since the linearized approximation at high X1ach numbers
ommstimates the suction forces and underestimates the
positive pressure forces. This causes the calculated opti-
mum profile to hare too large a leadirg-edge angle, a posi-
tion of masimum thickness too far forw-ard, and too smalI
an inclination of the surface behind the position of maxi-
mum thickness. (Ln reference 9 some calculations usiu~
second-order theory are presented which ilustra te this
effect on the optimum sharp-traifing-edge profile for the
auxiliary concLition of a gi~en thickness ratio.)

Because the optimum pro61e, by definition, has the
le2st pressure clrag possible under giyen conditions, small
cha~~es in profde shape wwuId resuIt in second-order changes
in clrag. This Wows some flexibility in modifying the
theoretically optimum profile to more cIoseIy suit indi~-iduaI
desia~ requirements, and means that iL is not important
to Mgorously adhere to the exact paraboIic, trigonometric-
sine, or elliptic-sine contour (proticled, of course, that the
end points of the modified contour are located approximately
in the optimum positions)- It is important to adhere
reasonably close to the calculated opt irnum trailing-edge
thickness, since this quantit~- can ~great}y affeet the drag.
In particidar, a traiIing-edge thickness considerably greater
than the optimum should not be uwsd. Excessi~e trailing-
edge thickness at lo-w and mocIerate supersonic Jlach
numbers can result in an ~~cessi~e increme in drag.
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APPENDIX

NOTE REGARDING DISCONTINUANCE CHANGE IN SLOPE
OF AN OPTIMUM PROFILE

In the general anaIysis of optimum profdes for a given
aP

thickness ratio it was found that the ful~ction Y’* ~ necessar-
y

ily was constant along each straight. segment of the profile
(equation (14)). ATO information was obtained} however,
about the relative value of this constant for the two seg-
ments. The required information can readily be obtainecl
by considering the change in drag due to a change only in
position of maximum thickness, that is, a change in slope of
both straight, surfaces illustrated in figure 3 with no change in
t or h. Llsing subscripts u and d to denote surfaces facing
upstream ancl downstream, respectively, it follows that

bed= a(cd),t + qcd)d

() (=t“g ~8~’. +(t–h) g), 6Y’.

Since ~’u = t/sfmd ~’d= (t‘h)/(c‘~), h minimizing
requires that

“’=”= -($).$ ‘S+(%l-”

“=’S[Y’’(%)U-Y’’2( %)J

Thus y“ & must be continuous at the coruer—a result.

which was used without proof in the general analysis. It
nmy be noted that an alternate proof of this result can be
obtained in m extremely easy way from the following
known result of the calculus of variations: The Weierstrass
E-function is continuous at the point of discontinuity on a

boundary. The E-function in the present case is I/z ~~.

For auxiliary conditions other than a given thickness ratio
it was tacitly assumed in the analysis that the optimum
surface everywhere had a continuous slope. This assumption

also requires some justification. IL is shown in the calculus
of variations that at all points of free variation it is necessary

aj
for ~ tobe continuous. For the present. problcrn this m~~ans

3P
that P+y’ ~ must be continuous at a~l such points. Ac-

hy

cording to linear theory, P+y’ ~~=$ y’, hence, within ttlc
&J p

scope of linear theory, the surface slope y’ is continuous fit.alI
points –of free variation. For shock-expansion th(wry
3P
zly’
— is positive, and a corner WOU1(lcause a discontinuous de-

crease in P, y’, and P+y’ ~~; lwuce, also mithin thoscopr of
&J

shocli-expansion theory the surface slope of the op [imum pro-
file is ccmtinuous at. aII points of free variation. This justifies
the assumption of continuous slope employed in the gencnd
analysis for au.tiliary conditions othw tlIan a given thickness
ratio,
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